We discuss a platform that has both software and hardware components, and whose purpose is to support research into characterizing and mitigating the sim-to-real gap in robotics and vehicle autonomy engineering. The software is operating-system independent and has three main components: a simulation engine called Chrono, which supports high-fidelity vehicle and sensor simulation; an autonomy stack for algorithm design and testing; and a development environment that supports visualization and hardware-in-the-loop experimentation. The accompanying hardware platform is a 1/6th scale vehicle augmented with reconfigurable mountings for computing, sensing, and tracking. Since this vehicle platform has a digital twin within the simulation environment, one can test the same autonomy perception, state estimation, or controls algorithms, as well as the processors they run on, in both simulation and reality. A demonstration is provided to show the utilization of this platform for autonomy research. Future work will concentrate on augmenting ART/ATK with support for a full-sized Chevy Bolt EUV, which will be made available to this group in the immediate future.
translated by 谷歌翻译
鉴于生成对抗网络(GAN)的多功能性,我们试图了解使用现有的gan从现有的gan增强模拟图像并减少SIM卡之间的差距所带来的好处。我们在模拟机器人性能和基于图像的感知的背景下进行分析。具体而言,我们量化了GAN减少机器人技术图像感知差异的能力。使用语义细分,我们使用名义上和增强的城市环境模拟来分析训练和测试中的SIM对差异。作为次要应用,我们考虑使用GAN来增强室内环境。对于此应用,对象检测用于分析训练和测试的增强。提出的结果量化了使用GAN时SIM到真实差距的减少,并说明了其使用的好处。
translated by 谷歌翻译
该贡献的重点是摄像机模拟,因为它在模拟其虚拟原型制作时会发挥作用。我们根据感知算法的性能和测量性能的上下文提出了相机模型验证方法。这种方法与传统的合成图像验证不同,合成图像通常是在像素或特征级别进行的,并且倾向于需要匹配的一对合成图像和真实图像。由于获取配对图像的成本和限制很高,因此提出的方法基于不一定是配对的数据集。在真实和模拟数据集中,A和B分别在统计上找到了类似内容和法官的子集AC和BC子集AC和BC,从统计学上讲,感知算法对这些相似子集的响应。这种验证方法获得了性能相似性的统计度量,以及A和B的内容之间的相似性度量,使用Chrono ::传感器生成的图像和缩放自动驾驶汽车,使用对象检测器作为对象检测器作为量表来证明该方法。感知算法。结果证明了量化模拟和真实数据之间(i)差异的能力; (ii)减轻SIM到真实差距的训练方法的倾向; (iii)两个数据集之间的上下文重叠。
translated by 谷歌翻译
我们描述了一个软件框架和用于串联的硬件平台,用于设计和分析模拟和现实中机器人自主算法。该软件是开源的,独立的容器和操作系统(OS)的软件,具有三个主要组件:COS ++车辆仿真框架(Chrono)的ROS 2接口(Chrono),该框架提供了高保真的轮毂/跟踪的车辆和传感器仿真;基于ROS 2的基本基于算法设计和测试的自治堆栈;以及一个开发生态系统,可在感知,状态估计,路径计划和控制中进行可视化和硬件实验。随附的硬件平台是1/6刻度的车辆,并具有可重新配置的用于计算,传感和跟踪的可重新配置的安装。其目的是允许对算法和传感器配置进行物理测试和改进。由于该车辆平台在模拟环境中具有数字双胞胎,因此可以测试和比较模拟和现实中相同的算法和自主堆栈。该平台的构建是为了表征和管理模拟到现实差距。在此,我们描述了如何建立,部署和用于改善移动应用程序的自主权。
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. This is achieved via a new pruning method called SparseGPT, specifically designed to work efficiently and accurately on massive GPT-family models. When executing SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, we can reach 60% sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time. SparseGPT generalizes to semi-structured (2:4 and 4:8) patterns, and is compatible with weight quantization approaches.
translated by 谷歌翻译
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
translated by 谷歌翻译
Model quantization enables the deployment of deep neural networks under resource-constrained devices. Vector quantization aims at reducing the model size by indexing model weights with full-precision embeddings, i.e., codewords, while the index needs to be restored to 32-bit during computation. Binary and other low-precision quantization methods can reduce the model size up to 32$\times$, however, at the cost of a considerable accuracy drop. In this paper, we propose an efficient framework for ternary quantization to produce smaller and more accurate compressed models. By integrating hyperspherical learning, pruning and reinitialization, our proposed Hyperspherical Quantization (HQ) method reduces the cosine distance between the full-precision and ternary weights, thus reducing the bias of the straight-through gradient estimator during ternary quantization. Compared with existing work at similar compression levels ($\sim$30$\times$, $\sim$40$\times$), our method significantly improves the test accuracy and reduces the model size.
translated by 谷歌翻译
Most existing pruning works are resource-intensive, requiring retraining or fine-tuning of the pruned models for accuracy. We propose a retraining-free pruning method based on hyperspherical learning and loss penalty terms. The proposed loss penalty term pushes some of the model weights far from zero, while the rest weight values are pushed near zero and can be safely pruned with no need for retraining and a negligible accuracy drop. In addition, our proposed method can instantly recover the accuracy of a pruned model by replacing the pruned values with their mean value. Our method obtains state-of-the-art results in retraining-free pruning and is evaluated on ResNet-18/50 and MobileNetV2 with ImageNet dataset. One can easily get a 50\% pruned ResNet18 model with a 0.47\% accuracy drop. With fine-tuning, the experiment results show that our method can significantly boost the accuracy of the pruned models compared with existing works. For example, the accuracy of a 70\% pruned (except the first convolutional layer) MobileNetV2 model only drops 3.5\%, much less than the 7\% $\sim$ 10\% accuracy drop with conventional methods.
translated by 谷歌翻译
Most of the existing works use projection functions for ternary quantization in discrete space. Scaling factors and thresholds are used in some cases to improve the model accuracy. However, the gradients used for optimization are inaccurate and result in a notable accuracy gap between the full precision and ternary models. To get more accurate gradients, some works gradually increase the discrete portion of the full precision weights in the forward propagation pass, e.g., using temperature-based Sigmoid function. Instead of directly performing ternary quantization in discrete space, we push full precision weights close to ternary ones through regularization term prior to ternary quantization. In addition, inspired by the temperature-based method, we introduce a re-scaling factor to obtain more accurate gradients by simulating the derivatives of Sigmoid function. The experimental results show that our method can significantly improve the accuracy of ternary quantization in both image classification and object detection tasks.
translated by 谷歌翻译